Механизированная наплавка и сварка

 


При производстве труб и строительных конструкций, при ремонте изношенных шеек коленчатых валов, шпоночных канавок, шлицов и шеек валов редукторов и коробок перемены передач строительно-дорожных машин, деталей ходовой части гусеничных машин и других деталей широко применяется механизированная наплавка и сварка. Наиболее распространены следующие способы наплавки: под слоем флюса, в средах углекислого газа, аргона и смеси защитных газов, электрошлаковая, электроконтактная, плазменная, вибродуговая, порошковая, приварка ленты.


Наплавка под слоем флюса (рис. 2.27) хорошо защищает расплавленный металл от вредного воздействия воздуха, по сравнению с ручной электродуговой сваркой облегчаются условия и повышается производительность труда. Кроме того, есть возможность улучшить качество наплавленного металла за счет легирования флюса.

Электрическая дуга горит под слоем гранулированного флюса в газовом пузыре, избыточное давление в котором надежно предохраняет металл от отрицательных воздействий воздуха (давление в газовом пузыре чуть выше атмосферного, за счет этого образуется свод расплавленного флюса и воздух не попадает к сварочной ванне). Кроме того, флюсовая оболочка не дает разбрызгиваться металлу электрода и позволяет лучше использовать тепло.

Процесс наплавки под слоем флюса очень производительный по двум причинам:

1. Сварочный ток (150 … 200 А/ м м² на единицу площади проволоки) из-за небольшого вылета электрода в 7 … 8 раз превышает значения тока при ручной электродуговой сварке.

2. Коэффициент наплавки в 1,5 … 2 раза выше чем при ручной электродуговой сварке, т. к. флюс и расплавленный шлак снижают потери  тепла и металла  на разбрызгивание и угар (не превышают 2% от массы расплавленной проволоки).

В качестве электрода используют голую сварочную проволоку диаметром от 1 до 6 мм. Подачу проволоки (100 …300 м/час) регулируют с помощью специального устройства.

По способу приготовления флюсы делятся на плавленые и неплавленые или керамические.

Плавленые флюсы получают сплавлением силикатов в печах и размельчением, они имеют стеклообразный вид. Эти флюсы сами не участвуют в формировании химического состава расплавленного металла, а только предохраняют его от воздуха. Наиболее распространен и дает хорошие результаты флюс АН — 348А. Однако, при использовании обычной сварочной проволоки типа Св-08, Св-10 получается малоуглеродистый слой наплавленного металла, имеющий низкую прочность и износостойкость. Введением в этот флюс (1%) графита или феррохрома можно получить износостойкий слой.

Неплавленые флюсы (АНК – 18, АНК-40, ЖСН-5,…)это (аналогично обмазке электрода) механическая смесь легирующих, газо- и шлакообразующих, связывающих и раскисляющих компонентов, влияющих на протекание металлургического процесса.. Хотя эти флюсы дают очень высокое качество наплавки, но они относительно дорогие.

При наплавке под слоем флюса чаще всего используют обратную полярность: через медный мундштук плюс от источника тока подводится к проволоке, а минус через станину и токосъемник — к детали. Для увеличения производительности наплавки применяют многоэлектродную наплавку или наплавку ленточным электродом. В первом случае подаются через специальный мундштук или двумя полуавтоматами две проволоки. Ленточным электродом можно наплавлять слой металла шириной до 100 мм.

В качестве защитных газов при сварке используются аргон, углекислый газ, смеси газов и водяной пар. Из-за высокой стоимости аргона наибольшее распространение на заводах сварных строительных и машиностроительных конструкций получила наплавка в среде углекислого газа   (рис. 2..28). Восстановление деталей сваркой и наплавкой в среде углекислого газа используется в основном для ремонта тонкостенных деталей кабин, кузовов и оперения. 


Углекислый газ, подаваемый в зону сварки, оттесняет воздух и тем самым защищает сварной шов от азота и кислорода. Однако углекислый газ при высокой температуре электрической дуги (до 6000 °С)  разлагается на окись углерода и кислород, поэтому выгорают углерод и легирующие элементы в наплавляемом металле. Негативные последствия этого устраняются применением специальной сварочной проволоки Св-08ГС, Св-10ГС и др. диаметром 0,8 …1,2 мм., содержащие легирующие добавки кремния, титана и марганца.

Достоинствами наплавки в среде углекислого газа являются:

1-плотный, ровный и красивый сварной шов, нет шлаковой корки и не требуется последующая механическая обработка, металл шва менее чувствителен к коррозии;

2-высокая производительность труда (в 1,5…2,5 раза выше, чем при ручной электродуговой сварке);

3-хорошие условия для визуального наблюдения сварщиком за процессом сварки;

4-небольшое коробление детали из-за хорошего охлаждения ее газом.


В качестве недостатков можно назвать относительно большое разбрызгивание металла и сравнительно низкие механические свойства сварного шва.

 Для сварки (рис. 2. 29) пользуются углекислотой, поставляемой в баллонах объемом 40 литров. Этого количества газа достаточно на 15 … 20 часов работы. Чтобы влага, содержащаяся в углекислоте, не вызывала разбрызгивание металла при сварке предусмотрен осушитель газа (медный купорос). В качестве редуктора используется обыкновенный кислородный редуктор. Сварка производится током обратной полярности. Расход углекислого газа 400 … 500 л/мин. получается узкий и глубокий шов и малая зона термического влияния.

В настоящее время для защиты сварочной дуги от вредного воздействия воздуха все шире начинают использовать защитные газовые смеси, состоящие из углекислого газа СО2 и аргона Аr.


 Из-за снижения потерь металла до 70…80% на разбрызгивание по сравнению с традиционной (в защитной среде СО2  ) производительность сварки (рис. 2.30 ) существенно (до 2 раз) возрастает и на 10…15% уменьшаются расходы электроэнергии и материалов. Смеси поставляются (завод «Уралтехгаз», г. Екатеринбург) в 40-литровых баллонах.

Электрошлаковая наплавка.  (рис. 2.31.) используется для ремонта деталей, имеющих большой износ (катки и гусеницы трактора,…), дает наибольшую из всех видов сварки плавлением производительность наплавки (Кн = 25 …30 г/А ч по сравнению с 7…12 г/А ч ручной электродуговой сварки)) и позволяет получить наплавленный металл высокого качества.

Сначала флюс расплавляется электрической дугой и далее является электрическим проводником, нагревающим при прохождении через него электрического тока, вследствие этого расплавляется металл электрода и детали, 

образуется металлическая ванна. При движении кристаллизатора кверху со скоростью соответствующей скорости расплавления электрода, которая в свою очередь определяется размером электрода и силой тока, происходит перемещение металлической ванны с флюсом кверху с остыванием нижних слоев металла. Флюс полностью предохраняет ванну от воздействия воздуха, позволяет вводить легирующие элементы, концентрирует тепло на расплавление металла.

Вибродуговая наплавка    выполняется колеблющимся электродом с частотой 50 …100 гц и с амплитудой 1 …3 мм. Колебания электрода оказывают существенное влияние на протекание процесса наплавки, состоящего из чередования циклов горения дуги, холостого хода и короткого замыкания.

Важной особенностью процесса является то, что вследствие наличия индуктивности в цепи при сравнительно низком напряжении источника тока (12 … 20 В) дуговой разряд протекает при напряжении устойчивого горения дуги (30… 35 В). В период дугового разряда выделяется 80 … 90% всего тепла (при коротком замыкании всего 10 … 20%).

Вибродуговую наплавку выполняют на постоянном токе обратной полярности в среде охлаждающей жидкости. В качестве её используется 4…5%-ый раствор кальцинированной соды или 10% -ый раствор технического глицерина в воде. Раствор подается на расстоянии 20 … 40 мм от электрода. Вода переходит в пар, её пары и продукты разложения  (кислород и водород защищают металл от азота). Подача охлаждающей воды также, как и прерывистый характер процесса, способствует уменьшению термического влияния. При разложении соды кальций способствует стабилизации горения дуги, а глицерин способствует уменьшению трещин при наплавке высокоуглеродистой проволокой.

Несмотря на ряд преимуществ (маленькая зона термического влияния, снижение выгорания легирующих элементов, возможность получения тонких и прочных покрытий) при вибродуговой наплавке  имеет место существенный недостаток  — снижение усталостной прочности деталей из-за неоднородности структуры и наличия пор. Поэтому этот способ в настоящее время используется редко, в частности, он не рекомендуется для наплавки деталей, работающих при знакопеременных нагрузках.

Сварка трением (рис 2.32) используется при изготовлении деталей, имеющих форму тел вращения, и в крупносерийном ремонтом производстве. Этим способом восстанавливаются шаровые пальцы, тяги. Широко применяется сварка трением при изготовлении и ремонте режущего инструмента (сверл, метчиков, фрез, разверток). Этим способом свариваются круглые стержни и трубы, выполняется их приварка к поверхностям деталей.

При вращении, прижатые усилием Р, торцевые поверхности детали нагреваются до 900 …1300 °С; вращение прекращается, а усилие прижима увеличивается в 2 … 3 раза и происходит сварка деталей давлением.

Сварка трением выполняется быстро, имеет высокий К.П.Д. и высокую производительность. Так для сравнения, электроконтактная сварка деталей поперечного сечения 750 мм2 выполняется за 12 секунд при потребляемой мощности 110 кВт, а при сварке трением такой же детали время сварки почти такое же- 10 секунд, но достаточно всего 5,4 кВт мощности. Недостатками этого способа является ограниченная область применения (только для тел вращения) и сравнительно небольшие размеры деталей.


Электронно-лучевая сварка (рис. 2.33)   из-за технологической сложности не получила широкого распространения, но является перспективной вследствие высокой производительности, малой зоны термического влияния и хорошего качества сварного шва.

Сварка проводится в вакуумной камере, где и помещается деталь перемещающаяся со скоростью сварки. Переменный ток низкого напряжения нагревает вольфрамовый катод, который испускает электроны, электрическим или магнитным полем фокусирующие в электронный луч. Для усиления эмиссии к детали и катоду подводится выпрямленный ток высокого напряжения. В результате получается узкий и глубокий шов и малая зона термического влияния.